\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}\)
⇒ A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
⇒ A < \(1-\frac{1}{6}\)
Mà \(1-\frac{1}{6}\)= \(\frac{5}{6}\)
⇒ A < \(\frac{5}{6}\)