chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B.\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
2) Cho △ABC thỏa mãn hệ thức \(b+c=2a\). Mệnh đề nào trong các mệnh đề sau đúng?
\(A.\cos B+\cos C=2\cos A\)
\(B.\sin B+\sin C=2\sin A\)
\(C.\sin B+C=\dfrac{1}{2}\sin A\)
\(D.\sin B+\cos C=2\sin A\)
Chứng minh rằng trong tam giác ABC ta có các hệ thức :
a) \(\sin A=\sin B\cos C+\sin C\cos B\)
b) \(h_a=2R\sin B\sin C\)
Tam giác ABC có \(bc=a^2\). Chứng minh rằng :
a) \(\sin^2A=\sin B.\sin C\)
b) \(h_b.h_c=h^2_a\)
Chứng minh:
a) \(tan(\frac\pi4+\frac{x}2).\frac{1+cos(\frac\pi2+x)}{sin(\frac\pi2+x)}=1\)
b) \(tan(\frac\pi4+x)=\frac{1+sin2x}{cos2x}\)
c) \(\frac{cosx}{1-sinx}=cot(\frac\pi4-\frac{x}{2})\)
d) \(tanx.tan3x=\frac{tan^22x-tan^2x}{1-tan^2x.tan^22x}\)
Tam giác ABC có \(b+c=2a\). Chứng minh rằng :
a) \(2\sin A=\sin B+\sin C\)
b) \(\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)