Bài tập cuối chương X

QL

Sắp xếp 5 tấm thẻ cùng loại được đánh số từ 1 đến 5 một cách ngẫu nhiên để tạo thành một số tự nhiên a có 5 chữ số. Tính xác suất của mỗi biến cố sau:

a) “a là số chẵn”

b) “a chia hết cho 5”

c) “\(a \ge 32000\)”

d) “Trong các chữ số của a  không có hai chữ số lẻ nào đứng cạnh nhau”

HM
27 tháng 9 2023 lúc 19:43

Gọi số lập được có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} \) với \(\left( {{a_1},{a_2},{a_3},{a_4},{a_5}} \right) = 1,2,3,4,5\)

Tổng số khả năng xảy ra của phép thử là \(n\left( \Omega  \right) = 5!\)

a) Biến cố “là số chẵn” xảy ra khi chữ số tận cùng là số chẵn, suy ra \({a_5} = \left\{ {2,4} \right\}\)

Số kết quả thuận lợi cho biến cố “là số chẵn” là \(n = 4!.2\)

Vậy xác suất của biến cố “là số chẵn” là \(P = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)

b) Biến cố “chia hết cho 5” xảy ra khi chữ số tận cùng là số 5

Suy ra, số kết quả thuận lợi cho biến cố “chia hết cho 5” là \(n = 4!.1\)

Vậy xác suất của biến cố “là số chẵn” là \(P = \frac{{4!.1}}{{5!}} = \frac{1}{5}\)

c) Biến cố “\(a \ge 32000\)” xảy ra khi có dạng như dưới đây\(\overline {5{a_2}{a_3}{a_4}{a_5}} ;\overline {4{a_2}{a_3}{a_4}{a_5}} ;\overline {34{a_3}{a_4}{a_5}} ;\overline {35{a_3}{a_4}{a_5}} ;\overline {32{a_3}{a_4}{a_5}} \)

Suy ra, số kết quả thuận lợi cho biến cố “\(a \ge 32000\)” là \(n = 2.4! + 3.3!\)

Vậy xác suất của biến cố “\(a \ge 32000\)” là \(P = \frac{{2.4! + 3.3!}}{{5!}} = \frac{{11}}{{20}}\)

d) Để sắp xếp các chữ số của ta cần thực hiện hai công đoạn

Công đoạn 1: Sắp xếp 2 chữ số chẵn trước có \(2!\) cách

Công đoạn 2: Sắp xếp 3 chũ số lẻ xen vào 3 chỗ trồng tạo bởi 2 chữ số chẵn có \(3!\) cách

Suy ra, số kết quả thuận lợi cho biến cố “Trong các chữ số của  không có hai chữ số lẻ nào đứng cạnh nhau” là \(2!.3!\)

Vậy xác suất của biến cố là \(P = \frac{{2!.3!}}{{5!}} = \frac{1}{{10}}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết