Ôn tập toán 8

LV

Rút gọn:

(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

CH
31 tháng 7 2016 lúc 16:04

Ta có: 

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{3^{64}-1}{2}\)

Bình luận (1)
H24
31 tháng 7 2016 lúc 16:01

đặt A= \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

=\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\frac{3-1}{2}\)

=\(\frac{3^{64}-1}{2}\)

áp dugj hằng đẳng thức thứ 3

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
NB
Xem chi tiết
DN
Xem chi tiết
TH
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết