Phân thức đại số

NT

Rút gọn phân thức:

\(B=\left(\dfrac{1}{x^2+2x}-\dfrac{2}{x^2-2x}+\dfrac{1}{x^2-4}\right):\left(\dfrac{1}{x-2}-\dfrac{1}{x}\right)\)

AH
8 tháng 12 2017 lúc 20:16

Lời giải:

ĐK: \(x\neq \left\{0; \pm 2\right\}\)

Ta có:

\(B=\left ( \frac{1}{x^2+2x}-\frac{2}{x^2-2x}+\frac{1}{x^2-4} \right ):\left(\frac{1}{x-2}-\frac{1}{x}\right)\)

\(B=\left ( \frac{x-2}{(x^2+2x)(x-2)}-\frac{2(x+2)}{(x^2-2x)(x+2)}+\frac{x}{x(x^2-4)} \right ):\left ( \frac{x-(x-2)}{x(x-2)} \right )\)

\(B=\left ( \frac{x-2}{x(x^2-4)}-\frac{2x+4}{x(x^2-4)}+\frac{x}{x(x^2-4)} \right ):\frac{2}{x(x-2)}\)

\(B=\frac{x-2-2x-4+x}{x(x^2-4)}.\frac{x(x-2)}{2}\)

\(B=\frac{-6}{x(x-2)(x+2)}.\frac{x(x-2)}{2}=\frac{-3}{x+2}\)

Bình luận (0)
NN
8 tháng 12 2017 lúc 20:44

\(B=\left(\dfrac{1}{x^2+2x}-\dfrac{2}{x^2-2x}+\dfrac{1}{x^2-4}\right):\left(\dfrac{1}{x-2}-\dfrac{1}{x}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{2}{x\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{1}{x-2}-\dfrac{1}{x}\right)\)

\(\Leftrightarrow B=\left(\dfrac{x-2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x}{x\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}\right)\)

\(\Leftrightarrow B=\dfrac{\left(x-2\right)-2\left(x+2\right)+x}{x\left(x-2\right)\left(x+2\right)}:\dfrac{x-\left(x-2\right)}{x\left(x-2\right)}\)

\(\Leftrightarrow B=\dfrac{x-2-2x-4+x}{x\left(x-2\right)\left(x+2\right)}:\dfrac{x-x+2}{x\left(x-2\right)}\)

\(\Leftrightarrow B=\dfrac{-6}{x\left(x-2\right)\left(x+2\right)}:\dfrac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow B=\dfrac{-6}{x\left(x-2\right)\left(x+2\right)}.\dfrac{x\left(x-2\right)}{2}\)

\(\Leftrightarrow B=\dfrac{-6.x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right).2}\)

\(\Leftrightarrow B=\dfrac{-3}{x+2}\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
MT
Xem chi tiết
HG
Xem chi tiết
NS
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
XL
Xem chi tiết
BO
Xem chi tiết