Ôn tập toán 7

DN

Rút gọn:  \(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\)

IM
10 tháng 8 2016 lúc 8:09

Đăỵ tổng là A

\(\Rightarrow A=\frac{1}{a^2-5a-4+10}+\frac{1}{a^2-7a-16+28}+\frac{1}{a^2-9a-25+45}+\frac{1}{a^2-11a-36+66}\)

\(\Rightarrow A=\frac{1}{\left(a^2-4\right)-\left(5a-10\right)}+\frac{1}{\left(a^2-16\right)-\left(7a-28\right)}+\frac{1}{\left(a^2-25\right)-\left(9a-45\right)}+\frac{1}{\left(a^2-36\right)-\left(11a-66\right)}\)

\(\Rightarrow A=\frac{1}{\left(a+2\right)\left(a-2\right)-5\left(a-2\right)}+\frac{1}{\left(a+4\right)\left(a-4\right)-7\left(a-4\right)}+\frac{1}{\left(a-5\right)\left(a+5\right)-9\left(a-5\right)}+\frac{1}{\left(a-6\right)\left(a+6\right)-11\left(a-6\right)}\)

\(\Rightarrow A=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-4\right)\left(a-3\right)}+\frac{1}{\left(a-5\right)\left(a-4\right)}+\frac{1}{\left(a-6\right)\left(a-5\right)}\)

\(\Rightarrow A=\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}+\frac{1}{a-6}-\frac{1}{a-5}\)

\(\Rightarrow A=\frac{1}{a-6}-\frac{1}{a-2}\)

\(\Rightarrow A=\frac{\left(a-2\right)-\left(a-6\right)}{\left(a-6\right)\left(a-2\right)}=\frac{4}{\left(a-6\right)\left(a-2\right)}\)

Bình luận (0)