Violympic toán 8

LT

rút gọn

\(\dfrac{-a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)

H24
25 tháng 9 2017 lúc 19:14

mới đọc đề đã thấy rắc rối rồi

Bình luận (1)
HS
11 tháng 9 2018 lúc 17:55

\(\dfrac{-a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=-\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left[-\left(a-b\right)\right]}+\dfrac{c^2}{-\left(a-c\right)\left[-\left(b-c\right)\right]}\)

\(=\dfrac{-a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\\ =\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{\left(a^2-ac-ab+bc\right)\left(b-c\right)}\)

\(=\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{a^2b-a^2c-abc+ac^2-ab^2+abc+b^2c-bc^2}\)

\(=\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{a^2b-a^2c+ac^2-ab^2+b^2c-bc^2}\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
HL
Xem chi tiết
NM
Xem chi tiết
DN
Xem chi tiết
BB
Xem chi tiết
MS
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết