Chương I - Căn bậc hai. Căn bậc ba

HL

Rút gọn biểu thức:

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{x-\sqrt{x}}\) với x>0;x\(\ne\)1

MN
3 tháng 7 2021 lúc 21:04

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1-3}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

Bình luận (0)
KH
3 tháng 7 2021 lúc 21:05

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3}{\sqrt{x}-1}\\ =\dfrac{\sqrt{x}+1-3}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

Bình luận (0)

\(\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x-1}\right)}-\dfrac{3\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(=\dfrac{x+\sqrt{x}-3\sqrt{x}}{\sqrt{x}.\left(\sqrt{x-1}\right)}\) \(=\dfrac{x-2\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
NS
Xem chi tiết
HL
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết