Chương I - Căn bậc hai. Căn bậc ba

TG

rút gọn biểu thức

Bài tập Toán

MP
12 tháng 6 2017 lúc 8:19

\(\left(\dfrac{x\sqrt{x}+1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\right)\) điều kiện xát định :(x > 0 ; x \(\ne\) 1 )

= \(\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x+1}{\sqrt{x}}\right)\)

= \(\dfrac{\left(x\sqrt{x}+1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)}+\dfrac{x+1}{\sqrt{x}}\)

= \(\dfrac{x^2+x\sqrt{x}+\sqrt{x}+1-\left(x^2-x\sqrt{x}+\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)}+\dfrac{x+1}{\sqrt{x}}\)

= \(\dfrac{x^2+x\sqrt{x}+\sqrt{x}+1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(x-1\right)}+\dfrac{x+1}{\sqrt{x}}\)

= \(\dfrac{2x\sqrt{x}+2}{\sqrt{x}\left(x-1\right)}+\dfrac{x+1}{\sqrt{x}}\) = \(\dfrac{2x\sqrt{x}+2+\left(\left(x+1\right)\left(x-1\right)\right)}{\sqrt{x}\left(x-1\right)}\)

= \(\dfrac{2x\sqrt{x}+2+x^2-1}{\sqrt{x}\left(x-1\right)}\) = \(\dfrac{2x\sqrt{x}+x^2+1}{\sqrt{x}\left(x-1\right)}\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
LJ
Xem chi tiết
SK
Xem chi tiết
NS
Xem chi tiết
GC
Xem chi tiết