\(A=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left[\left(3x^3+1\right)+3x\right]\left[\left(3x^3+1\right)-3x\right]-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-\left(3x\right)^2-\left(3x^3+1\right)^2\)
\(=-\left(3x\right)^2\)
\(=-9x^2\)
\(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2=\left(3x^3+1\right)^2-\left(3x\right)^2-\left(3x^3+1\right)^2=-9x^2\)