Violympic toán 8

LC

rút gọn biểu thức

A= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)

NH
6 tháng 8 2020 lúc 10:35

ĐKXĐ : \(x\ne\mp y\) ; \(x,y\ne0\)

Ta có :

\(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2+y^2}\right):\frac{4xy}{y^2-x^2}\)

\(=\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x-y\right)\left(x+y\right)}\right):\frac{4xy}{\left(y-x\right)\left(x+y\right)}\)

\(=\left(\frac{x-y}{\left(x-y\right)\left(x+y\right)^2}-\frac{x+y}{\left(x-y\right)\left(x+y\right)^2}\right).\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)

\(=\frac{x-y-x-y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)

\(=\frac{-2y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)

\(=\frac{1}{2x\left(x+y\right)}\)

Vậy..

Bình luận (0)
NL
6 tháng 8 2020 lúc 10:36

ĐKXĐ : \(x\ne\pm y\)

Ta có : \(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)

=> \(A=\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)

=> \(A=\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)

=> \(A=\left(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)

=> \(A=\left(\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)

=> \(A=\frac{1}{2x\left(x+y\right)}\)


Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
DT
Xem chi tiết
MN
Xem chi tiết
PC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết