Chương I - Căn bậc hai. Căn bậc ba

Na

Rút gọn:

a) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

b) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)

AH
23 tháng 9 2018 lúc 18:48

Lời giải:

a)

\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{25}.\sqrt{5}-\sqrt{16}.\sqrt{5}+\sqrt{121}.\sqrt{5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}(2-5-4+11)=4\sqrt{5}\)

b)

\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{\sqrt{20}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}+\frac{8(1+\sqrt{5})}{(1-\sqrt{5})(1+\sqrt{5})}\)

\(=\sqrt{20}+\frac{8(1+\sqrt{5})}{1-5}=2\sqrt{5}-2(1+\sqrt{5})=-2\)

Bình luận (3)

Các câu hỏi tương tự
Na
Xem chi tiết
NL
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
TD
Xem chi tiết
NY
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết