Luyện tập chung trang 13

QL

Quy đồng mẫu thức các phần thức sau:

\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\);

\(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).

HM
9 tháng 9 2023 lúc 14:21

\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\)

Ta có: MTC là : \(12{{\rm{x}}^2}{y^2}\).

Nhân tử phụ của phân thức \(\frac{1}{{4{\rm{x}}{y^2}}}\)là 3x

Nhân tử phụ của phân thức \(\frac{5}{{6{{\rm{x}}^2}y}}\)là 2y

Khi đó: \(\frac{1}{{4{\rm{x}}{y^2}}} = \frac{{1.3{\rm{x}}}}{{4{\rm{x}}{y^2}.3{\rm{x}}}} = \frac{{3{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)

\(\frac{5}{{6{{\rm{x}}^2}y}} = \frac{{5.2y}}{{6{{\rm{x}}^2}y.2y}} = \frac{{10y}}{{12{{\rm{x}}^2}{y^2}}}\)

 \(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).

Ta có: \(\begin{array}{l}4{{\rm{x}}^2} - 36 = 4({x^2} - 9) = 4(x - 3)(x + 3)\\{x^2} + 6{\rm{x}} + 9 = {(x + 3)^2}\end{array}\)

MTC là: \(4(x - 3){(x + 3)^2}\)

Nhân tử phụ của phân thức \(\frac{9}{{4{{\rm{x}}^2} - 36}}\)là: x + 3

Nhân tử phụ của phân thức \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\)là 4(x – 3)

Khi đó: \(\begin{array}{l}\frac{9}{{4{{\rm{x}}^2} - 36}} = \frac{9}{{4({x^2} - 9)}} = \frac{9}{{4(x - 3)(x + 3)}} = \frac{{9(x + 3)}}{{4(x - 3){{(x + 3)}^2}}}\\\frac{1}{{{x^2} + 6{\rm{x}} + 9}} = \frac{1}{{{{(x + 3)}^2}}} = \frac{{4(x - 3)}}{{4(x - 3){{(x + 3)}^2}}}\end{array}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết