Ta có : `1/x; -1/y`
\(\dfrac{1}{x}=\dfrac{1\cdot y}{x\cdot y}=\dfrac{y}{xy}\\ -\dfrac{1}{y}=\dfrac{-1\cdot x}{y\cdot x}=-\dfrac{x}{xy}\)
Ta có : `1/x; -1/y`
\(\dfrac{1}{x}=\dfrac{1\cdot y}{x\cdot y}=\dfrac{y}{xy}\\ -\dfrac{1}{y}=\dfrac{-1\cdot x}{y\cdot x}=-\dfrac{x}{xy}\)
Quy đồng mẫu thức của hai phân thức \(\frac{1}{{x + 1}}\)và \(\frac{1}{x}\); trừ các tử thức nhận được và giữ nguyên mẫu thức chung để tính \(\frac{1}{{x + 1}} - \frac{1}{x}\)
Cộng hai phân thức có cùng mẫu thức nhận được trong HĐ3 ta được kết quả phép cộng \(\frac{1}{x} + \frac{{ - 1}}{y}\)
Trừ các tử thức và giữ nguyên mẫu thức để tính: \(\frac{{x - y}}{{x + 1}} - \frac{{2{\rm{x}} + 3}}{{x + 1}}\)
Rút gọn biểu thức: \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\)
Hãy thực hiện các yêu cầu sau để làm phép cộng:
\(\frac{{2x + y}}{{x - y}} + \frac{{ - x + 3y}}{{x - y}}\)
Cộng các tử thức của hai phân thức đã cho.
Thực hiện các phép tính sau:
\(a)\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}}\)
\(b)\frac{x}{{x - y}} - \frac{y}{{x + y}}\)
\(c)\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}\)
Đề bài đưa ra: hãy rút gọn biểu thức:
\(P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\)
Vuông: Không cần tính toán, em thấy ngay kết quả P = 0
Tròn: Làm thế nào mà Vuông thấy ngay được kết quả thế nhỉ?
Đề bài đưa ra: hãy rút gọn biểu thức:
\(P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\)
Vuông: Không cần tính toán, em thấy ngay kết quả P = 0
Tròn: Làm thế nào mà Vuông thấy ngay được kết quả thế nhỉ?
Thực hiện các phép tính:
\(a)\frac{{{x^2} - 3{\rm{x}} + 1}}{{2{{\rm{x}}^2}}} + \frac{{5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}}\)
\(b)\frac{y}{{x - y}} + \frac{x}{{x + y}}\)
\(c)\frac{x}{{2{\rm{x}} - 6}} + \frac{y}{{2{\rm{x}}\left( {3 - x} \right)}}\)