Bài 1.
Cho góc xOy < 90 0 . Vẽ tia Oz là tia phân giác của góc xOy. Trên tia Ox lấy điểm A, trên
tia Oy lấy điểm B sao cho OA = OB. Gọi M là giao điểm của đoạn AB với tia Oz.
a) Chứng minh: ΔAOM = ΔBOM và AM = BM.
b) Chứng minh: OM là đường trung trực của đoạn thẳng AB.
c) Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho AC = BD. Chứng minh: AB //
CD
Bài 2:
Cho ΔABC có AB=AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh ΔABD=ΔACD và AD là tia phân giác của góc BAC.
b) Vẽ DM⊥AB. Trên cạnh AC lấy điểm N sao cho AN=AM. Chứng minh DN⊥AC.
c) Gọi K là trung điểm của đoạn thẳng NC. Trên tia đối của tia KD lấy điểm E sao cho
KD=KE. Chứng minh M,N,E thẳng hàng.
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE \(\perp\) BC (E \(\in\) BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh :
a) \(\Delta\) ABD = \(\Delta\) EBD
b) BD là đường trung trực của đoạn thẳng AE.
c) AD < DC
d) \(\widehat{ADF}\) = \(\widehat{EDC}\) và E, D, F thẳng hàng.
Cho \(\Delta ABC\) vuông tại A (AB>AC).Vẽ tia phân giác của góc C cắt AB tại D.Trên cạnh BC lấy điểm E sao cho CE=CA
a)Chứng minh:\(\Delta CDA=\Delta CDE\) và \(DE\perp BC\)
b)Qua C vẽ đường thẳng vuông góc với AC.Qua A vẽ đường thẳng song song với CD,hai đường này cắt nhau tại M.Chứng minh: AM=CD
c)Qua B vẽ đường thẳng vuông góc với CD tại N và cắt AC tại K.Chứng minh:AK=BEvà K;E;D thẳng hàng.
(❤Mọi Người Nhớ Giúp Mình Nha❤)
Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho ΔABC cân tại A. M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh ΔAMD = ΔCMB, từ đó chứng minh AD // BC
b) Chứng minh ΔACD cân
c) Trên tia đối của tia CA lấy điểm E sao cho CE = CA. Chứng minh D đi qua trung điểm của BE.
Cho \(\Delta ABC\) vuông tại A , Kẻ AH vuông góc với BC tại H. Gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm D sao cho DM = MA
a, So sánh: \(\widehat{BAH}\) và \(\widehat{BCA}\)
b. C/minh: AB // CD
c, Trên tia đối của tia CD lấy điểm I sao cho CI = CA qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. C/minh: AE = BC
Cho ΔABC vuông tại A có AB = 6cm, BC = 10cm.
a) Tính độ dài cạnh AC và so sánh các góc của ΔABC.
b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. C/m ΔBCD cân.
c) Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt cạnh AC tại M. Tính MC.
d) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q.
Chứng minh ba điểm B, M, Q thẳng hàng.
Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MB
a)Chứng minh AD=CB
b)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độ