Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho Tam giác MNP CÓ GÓC P <góc N<90 độ. Kẻ MD vuông góc với NP tại D. Gọi A là trung điểm của MD. Trên tia đối của tia AN lấy điểm E sao cho AE= AN. Trên tia đối của tia AP lấy điểm F sao cho AF= AP.
a, CM: ME = ND
b, So sánh ND VÀ PD
C, CM: ba điểm E,M,F thẳng hàng
GIẢI CHI TIẾT TẤT CẢ CÁC PHẦN VÀ VẼ HÌNH HỘ MIK NHA, mik cần gấp lắm
Cho ΔABC có góc A=90 độ, AB= 6cm, AC= 8cm. Kẻ đường trung tuyến AM, trên tia đối của tia MA lấy điểm D sao cho MD= MA
a. Tính độ dài các đoạn thẳng BC, DC, AM
b. Chứng minh rằng: DC ⊥ AC
c. Chứng minh rằng: góc MAC > góc MAB
Giúp mik làm nhanh ạ, vẽ hình giùm mik ạ
Cho ΔABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a. Chứng minh: ΔABM = ΔDCM
b. Chứng minh: AB // DC
c. Kẻ BE ⊥ AM ( E ∈ AM) , CF ⊥ DM (F ∈ DM) . Chứng minh: M là trung điểm của EF
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B, D sao cho OA = OB, OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh OE là tia phân giác của góc xOy
Cho tam giác ABC vuông tại A có AB = BC Gọi H là trung điểm của BC chứng minh tam giác ahb bằng tam giác ACh chứng minh góc bah= góc ach trên tia đối của tia ah lấy điểm e sao cho ae = bc trên tia đối của tia ca lấy điểm f sao cho cf = ab chứng minh be = bf và be vuông góc với bf