Phân tích đa thức thành nhân tử
a,\(xy+y^2-x-y\)
=\(\left(xy+y^2\right)-\left(x+y\right)\)
=\(y\left(x+y\right)-\left(x+y\right)\)
=\(\left(x+y\right)\left(y-1\right)\)
b, \(25-x^2+4xy-4y^2\)
=\(-\left(x^2-4xy+4y^2-25\right)\)
=\(-\left[\left(x-2y\right)^2-5^2\right]\)
=\(-\left(x-2y-5\right)\left(x-2y+5\right)\)
a) xy + y2 - x - y
= x(x+y) - (x+y)
= (x+y)(x - 1)
b) 25 - x2 + 4xy - 4y2
= 52 -( x2 - 4xy + 4y2)
Tự làm nha
a)\(xy+y^2-x-y=\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)
b)\(25-x^2+4xy-4y^2=\left(-x^2\right)+4xy-4y^2+25\\ =-\left[\left(x^2-4xy+4y^2\right)-25\right]\\ =-\left[\left(x-2y\right)^2-5^2\right]\\ =-\left(x-2y+5\right).\left(x-2y-5\right)\)
ak mk sai câu b mk sử lại nha
b , \(25-x^2+4xy-4y^2=5^2-\left(x^2-4xy+4y^2\right)\)
=\(5^2-\left(x-2y\right)^2=\left(5-x-2y\right)\left(5+x-2y\right)\)