Ôn thi vào 10

ND

P=\(\dfrac{\sqrt{a+2}}{\sqrt{a+3}}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

a) Rút gọn P

b) Tìm a ϵ Z để P nguyên

HT
5 tháng 7 2021 lúc 10:50

a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)

P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)

P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P  = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) 

b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)

Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bảng sau: 

\(\sqrt{a}-2\)          1          -1           2          -2
\(\sqrt{a}\)          3          1           4          0
a          9 (TM)          1 (TM)          16 (TM)          0 (TM)

Vậy để \(P\in Z\) thì  \(a\in\left\{0;1;9;16\right\}\)

Bình luận (1)