a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)
P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)
P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)
Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-2\) | 1 | -1 | 2 | -2 |
\(\sqrt{a}\) | 3 | 1 | 4 | 0 |
a | 9 (TM) | 1 (TM) | 16 (TM) | 0 (TM) |
Vậy để \(P\in Z\) thì \(a\in\left\{0;1;9;16\right\}\)