Chiều dài tấm bạt bé là: \(a.\dfrac{1}{k} = \dfrac{a}{k}\) (m)
Chiều rộn tấm bạt bé là: \(b.\dfrac{1}{k} = \dfrac{b}{k}\) (m)
Diện tích của mỗi tấm bạt bé là: \(\dfrac{a}{k} \cdot \dfrac{b}{k} = \dfrac{{ab}}{{{k^2}}}\) (\({m^2}\))
Chiều dài tấm bạt bé là: \(a.\dfrac{1}{k} = \dfrac{a}{k}\) (m)
Chiều rộn tấm bạt bé là: \(b.\dfrac{1}{k} = \dfrac{b}{k}\) (m)
Diện tích của mỗi tấm bạt bé là: \(\dfrac{a}{k} \cdot \dfrac{b}{k} = \dfrac{{ab}}{{{k^2}}}\) (\({m^2}\))
Tâm đạp xe từ nhà tới câu lạc bộ câu cá có quãng đường dài 15km với tốc độ x(km/h). Lượt về thuận chiều gió nên tốc độ nhanh hơn lượt đi 4km/h.
a) Viết biểu thức biểu thị tổng thời gian T hai lượt đi và về.
b) Viết biểu thức biểu thị hiệu thời gian t luợt đi đối với lượt về.
c) Tính T và t với x=10
Đường sắt và đường bộ từ thành phố A đến thành phố B có độ dài bằng nhau và bằng \(s\) (km). Thời gian để đi từ A đến B của tàu hỏa là \(a\) (giờ), của ô tô khách là \(b\) (giờ) (\(a < b\)). Tốc độ của tàu hỏa gấp bao nhiêu lần tốc độ của ô tô? Tính giá trị này khi \(s = 350\), \(a = 5\), \(b = 7\).
Máy A xát được \(x\) tấn gạo trong \(a\) giờ, máy B xát được \(y\) tấn gạo trong \(b\) giờ.
a) Viết các biểu thức biểu thị số tấn gạo mỗi máy xát được trong 1 giờ (gọi là công suất của máy)
b) Công suất của máy A gấp bao nhiêu lần số máy B? Viết biểu thức biểu thị số lần này.
c) Tính giá trị của biểu thức ở câu b) khi \(x = 3\), \(y = 2\), \(b = 4\)
Thực hiện các phép tính sau:
a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\) b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\) c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\)
Tính:
a) \(\dfrac{{3{a^2}}}{{10{b^3}}} \cdot \dfrac{{15b}}{{9{a^4}}}\) b) \(\dfrac{{x - 3}}{{{x^2}}} \cdot \dfrac{{4x}}{{{x^2} - 9}}\)
c) \(\dfrac{{{a^2} - 6a + 9}}{{{a^2} + 3a}} \cdot \dfrac{{2a + 6}}{{a - 3}}\) d) \(\dfrac{{x + 1}}{x} \cdot \left( {x + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right)\)
Thực hiện các phép nhân phân thức sau:
a) \(\dfrac{{4y}}{{3{x^2}}} \cdot \dfrac{{5{x^3}}}{{2{y^3}}}\)
b) \(\dfrac{{{x^2} - 2x + 1}}{{{x^2} - 1}} \cdot \dfrac{{{x^2} + x}}{{x - 1}}\)
c) \(\dfrac{{2x + {x^2}}}{{{x^2} - x + 1}} \cdot \dfrac{{3{x^3} + 3}}{{3x + 6}}\)
Thực hiện các phép chia phân thức sau:
a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\)
b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\)
c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
Tính:
a) \(\left( {\dfrac{{1 - x}}{x} + {x^2} - 1} \right):\dfrac{{x - 1}}{x}\)
b) \(\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{x}} \right) \cdot \dfrac{{{x^2}}}{y} + \dfrac{x}{y}\)
c) \(\dfrac{3}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{1}{x} \cdot \dfrac{{{x^2}}}{3}\)
Tính:
a) \(\dfrac{{4{x^2} + 2}}{{x - 2}} \cdot \dfrac{{3x + 2}}{{x - 4}} \cdot \dfrac{{4 - 2x}}{{2{x^2} + 1}}\)
b) \(\dfrac{{x + 3}}{x} \cdot \dfrac{{x + 2}}{{{x^2} + 6x + 9}}:\dfrac{{{x^2} - 4}}{{{x^2} + 3x}}\)