Ôn tập toán 8

PP

Một phân thức có dạng \(\frac{k^2-5k+8}{k^2+6k+19}\) với \(k\in N\). Chứng Minh rằng nếu tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11.

H24
16 tháng 8 2016 lúc 16:49

Chứng minh tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11 nghĩa là ta chứng minh nếu \(k^2-5k+8\)chia hết cho 11 thì \(k^2+6k+9\)cũng chia hết cho 11 và ngược lại.

Ta có :

\(k^2-5k+8\)chia hết cho 11

Mà \(11k\)chia hết cho 11

\(11\)chia hết cho 11

\(\Rightarrow k^2-5k+8+11k+11\)chia hết cho 11

\(\Rightarrow k^2+6k+19\)chia hết cho 11

Chứng minh ngược lại :

\(k^2+6k+19\)chia hết cho 11

Mà \(11k;11\)chia hết cho 11

\(\Rightarrow k^2+6k+19-11k-11\)chia hết cho 11

\(\Rightarrow k^2-5k+8\)chia hết cho 11

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
TL
Xem chi tiết
VQ
Xem chi tiết
NP
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
HN
Xem chi tiết