Bài 2. Đường thẳng vuông góc với mặt phẳng

H24

Một cái lều có dạng hình lăng trụ \(ABC.A'B'C'\) có cạnh bên \(AA'\)vuông góc với đáy (Hình 24). Cho biết \(AB = AC = 2,4m;BC = 2{\rm{ }}m;AA' = 3m\).

a) Tính góc giữa hai đường thẳng \(AA'\) và \(BC\); \(A'B'\) và \(AC\).

b) Tính diện tích hình chiếu vuông góc của tam giác \(ABB'\) trên mặt phẳng \(\left( {BB'C'C} \right)\).

MP
22 tháng 8 2023 lúc 20:20

tham khảo

loading...

a) Vì \(AA'//BB'\) nên góc giữa \(AA'\) và \(BC\) là góc giữa \(BB'\) và \(BC\).

Vì cạnh bên vuông góc với đáy nên \(BB'\perp BC\). Do đó, \(\widehat{B'BC}=90^o\)

\(A'B'//AB\) nên góc giữa \(A'B'\)\(AC\) là góc giữa \(AB\) và \(AC\).

Ta có:\(\cos\widehat{BAC}=\dfrac{2,4^2+2,4^2-2^2}{2.2,4.2,4}=\dfrac{47}{72}\)

Nên \(\widehat{BAC}=49,2^o\)

b) Kẻ \(AH\perp BC\). Vì cạnh bên vuông góc với đáy nên \(BB'\perp AH\).

Ta có \(AH\perp BB',AH\perp BC\) nên \(AH\perp\left(BCC'B'\right)\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết