Chương V- Chất khí

TM

Một bình hình trụ có chiều cao \(l_0\left(cm\right)\) chứa không khí ở nhiệt độ \(t\left(^oC\right)\). Lộn ngược bình và nhúng vào chậu chứa chất lỏng có khối lượng riêng \(\rho\left(kg\cdot m^{-3}\right)\) sao cho đáy của bình ngang với mặt thoáng của chất lỏng trong chậu. Quan sát thấy được mực chất lỏng trong bình dâng lên độ cao \(h\left(h< l_0\right)\left(cm\right)\). Cho áp suất khí quyển là \(p_0\left(Pa\right)\), gia tốc trọng trường \(g\left(m\cdot s^{-2}\right)\).

1. Nâng bình cao thêm một đoạn \(dl\left(h< dl< l_0\right)\left(cm\right)\). Mực chất lỏng trong bình lúc này chênh lệch một khoảng \(x\) bao nhiêu so với mặt thoáng ở ngoài?

2. Giữ bình ở vị trí như ý 1, tìm nhiệt độ không khí trong bình cần được nâng lên đến để \(x=0\).

Áp dụng bằng số:

\(l_0=20\left(cm\right);h=10\left(cm\right);dl=12\left(cm\right);p_0=9,4\cdot10^4\left(Pa\right);g=10\left(m\cdot s^{-2}\right);t=37\left(^oC\right);\rho=800\left(kg\cdot m^{-3}\right)\)

NG
26 tháng 1 2024 lúc 14:56

a)Áp suất khí quyển ở mặt thoáng chất lỏng trong bình:

\(P_1=P_0+\rho\cdot g\cdot h\)

Khi bình được nâng thêm \(dl=12\left(cm\right)\) thì áp suất thay đổi ở mặt thoáng:

\(\Delta P=\rho g\cdot\left(h+dl\right)-\rho g\cdot h=\rho g.dl\)

Sử dụng nguyên lí Bôilơ - Mariốt ta có: \(P'=P_1+\rho\cdot g\cdot\left(l_0-h-dl\right)=P_0+\rho g.h+\rho g\left(l_0-h-dl\right)\)

\(\Rightarrow P'=9,4\cdot10^4+800\cdot10\cdot0,1+800\cdot10.\left(0,2-0,1-0,12\right)=94640Pa\)

Áp suất trong bình ban đầu:

\(P=d\cdot h+P_0=800\cdot0,2+9,4\cdot10^4=94160Pa\)

Độ chênh  lệch áp suất: \(\Delta P=P'-P=94640-94160=480\left(Pa\right)\)

Độ chênh lệch mực chất lỏng trong bình:

\(x=\dfrac{\Delta P}{d}=\dfrac{\Delta P}{10\rho}=\dfrac{480}{10\cdot800}=0,06m=6cm\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
DK
Xem chi tiết
L2
Xem chi tiết
L2
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết