Bài 1: Nguyên hàm

TH

loading...  Mọi người giúp mk giải chi tiết câu này với ạ. Mk cảm ơn

KR
28 tháng 1 2023 lúc 18:44

\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)

 

We substitute :

\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)

Then, 

\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)

 

Finally,

\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)

 

Bình luận (0)

Các câu hỏi tương tự
SH
Xem chi tiết
NP
Xem chi tiết
TK
Xem chi tiết
TP
Xem chi tiết
TB
Xem chi tiết
TB
Xem chi tiết
TD
Xem chi tiết
SV
Xem chi tiết
HH
Xem chi tiết