Ai giải hộ mk cái hệ với
: x^3 - y^3 + 3x -12y + 7 = 3x^2 - 6y^2 (1)
√(x+2) + √(4-y) = x^3 + y^2 - 4x - 2y (2)
√ là căn
Mọi người giải giúp em Phương trình này với ạ
Căn bậc 2 (x-2)+ căn bậc 2 (x+1)+ căn bậc 2 (2x-5)=2x2-5x
Mọi người thông cảm vì em không biết đánh căn bậc 2
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x-3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
Có cách nào phân tích giúp em Phương trình này được không ạ
2x3+xy2+x=2y3+4x2y+2y
Mọi người phân tích giúp em au. E đang giải hệ phương trình trongu đó có phương trình trên em không biết chuyển x sang y như thế nào mong moi người giúp em ạ
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\sqrt{x+y^2+y+3}-3\sqrt{y}=\sqrt{x+2}\\y^3+y^2-3y-5=3x-3\sqrt[3]{x}+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x-2\right)\left(2y-1\right)=x^3+20y-28\\2\left(\sqrt{x+2y}+y\right)=x^2+x\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{2x+y}+2\sqrt{x-2y+1}=5\\3\sqrt{x-2y+1}+y=3x+2\end{matrix}\right.\)
Trình bày rõ ràng, dễ hỉu giúp mk với ạaaa
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^2\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=-x^2\left(x^4+1-2x^2-2xy^2\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\sqrt{x-1}+\sqrt{x}\left(3\sqrt{x}-y\right)+x\sqrt{x}=3y+\sqrt{y-1}\\3xy^2+4=4x^2+2y+x\end{matrix}\right.\)