Bài 2: Tích phân

TB

Mọi người giải em hộ bài

3.9 cau a, b, d, và h

3.10 cau a, b, e, và c

e Cảm ơn nhiều ạBài tập Tất cả

AH
10 tháng 8 2017 lúc 22:47

Bài 3.9:

a)

\(\int ^{1}_{0}(y^3+3y^2-2)dy=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{y^4}{4}+y^3-2y \right )=\frac{-3}{4}\)

b) \(\int ^{4}_{1}\left (t+\frac{1}{\sqrt{t}}-\frac{1}{t^2}\right)dt=\left.\begin{matrix} 4\\ 1\end{matrix}\right|\left ( \frac{t^2}{2}+2\sqrt{t}+\frac{1}{t} \right )=\frac{35}{4}\)

d) Ta có:

\(\int ^{1}_{0}(3^s-2^s)^2ds=\int ^{1}_{0}(9^s+4^s-2.6^s)ds=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{9^s}{\ln 9}+\frac{4^s}{\ln 4}-\frac{2.6^s}{\ln 6} \right )\)

\(=\frac{8}{\ln 9}+\frac{3}{\ln 4}-\frac{10}{\ln 6}\)

h)

Ta có \(\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{1+\sin 2x}}dx=\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{\sin^2x+\cos^2x+2\sin x\cos x}}dx\)

\(=\int ^{\frac{5\pi}{4}}_{\pi}\frac{-d(\sin x+\cos x)}{|\sin x+\cos x|}=\int ^{\frac{5\pi}{4}}_{\pi}\frac{d(\sin x+\cos x)}{\sin x+\cos x}=\left.\begin{matrix} \frac{5\pi}{4}\\ \pi\end{matrix}\right|\ln |\sin x+\cos x|=\ln (\sqrt{2})\)

Bình luận (0)
AH
11 tháng 8 2017 lúc 2:13

Bài 3.10:

a)

Đặt \(t=1-x\) thì:

\(\int ^{2}_{1}x(1-x)^5dx=\int ^{-1}_{0}t^5(1-t)d(1-t)=\int ^{0}_{-1}t^5(1-t)dt\)

\(=\left.\begin{matrix} 0\\ -1\end{matrix}\right|\left ( \frac{t^6}{6}-\frac{t^7}{7} \right )=\frac{-13}{42}\)

b) Đặt \(\sqrt{e^x-1}=t\) \(\Rightarrow x=\ln (t^2+1)\)

Khi đó

\(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=\int ^{1}_{0}td(\ln (t^2+1))=\int ^{1}_{0}t.\frac{2t}{t^2+1}dt\)

\(=\int ^{1}_{0}\frac{2t^2}{t^2+1}dt=\int ^{1}_{0}2dt-\int ^{1}_{0}\frac{2}{t^2+1}dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|2t-\int ^{1}_{0}\frac{2dt}{t^2+1}=2-\int ^{1}_{0}\frac{2dt}{t^2+1}\)

Với \(\int ^{1}_{0}\frac{2dt}{t^2+1}\), đặt \(t=\tan m\)

\(\Rightarrow \int ^{1}_{0}\frac{2dt}{t^2+1}=\int ^{\frac{\pi}{4}}_{0}\frac{2d(\tan m)}{\tan ^2m+1}=\int ^{\frac{\pi}{4}}_{0}2\cos ^2md(\tan m)\)

\(=\int ^{\frac{\pi}{4}}_{0}2dm=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|2m=\frac{\pi}{2}\)

Do đó \(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=2-\frac{\pi}{2}\)

Bình luận (0)
AH
11 tháng 8 2017 lúc 2:36

Bài 3.10

c) Đặt \(t=\sqrt[3]{1-x}\Rightarrow x=1-t^3\)

\(\int ^{9}_{1}x\sqrt[3]{1-x}dx=\int ^{-2}_{0}(1-t^3)td(1-t^3)=\int ^{0}_{-2}3t^2.t(1-t^3)dt\)

\(\left.\begin{matrix} 0\\ -2\end{matrix}\right|\left ( \frac{3t^4}{4}-\frac{3t^7}{7} \right )=\frac{-468}{7}\)

e) Đặt \(t=\frac{1}{x}\) suy ra:

\(\int ^{2}_{1}\frac{\sqrt{x^2+1}}{x^4}dx=\int ^{\frac{1}{2}}_{1}t^4\sqrt{\frac{1}{t^2}+1}d\left(\frac{1}{t}\right)\)

\(=\int ^{1}_{\frac{1}{2}}\frac{t^4\sqrt{t^2+1}}{t}.\frac{1}{t^2}dt=\int ^{1}_{\frac{1}{2}}t\sqrt{t^2+1}dt=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\sqrt{t^2+1}d(t^2+1)\)

\(=\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left(\frac{1}{2}.\frac{2}{3}\sqrt{(t^2+1)^3}\right)=\frac{2\sqrt{2}}{3}-\frac{5\sqrt{5}}{24}\)

Bình luận (0)

Các câu hỏi tương tự
TJ
Xem chi tiết
LH
Xem chi tiết
QN
Xem chi tiết
TB
Xem chi tiết
KT
Xem chi tiết
HT
Xem chi tiết
TL
Xem chi tiết
QA
Xem chi tiết
VT
Xem chi tiết