\(\sqrt{4x-20}\)- 3\(\sqrt{\dfrac{x-5}{9}}\)=2
= \(\sqrt{4x-4.5}\)-3\(\sqrt{\dfrac{x-5}{9}}\)=2
= 2.2\(\sqrt{x-5}\)-3.9\(\sqrt{x-5}\)=2
= -23\(\sqrt{x-5}\)=2
= -23.x-5=2
=-23x=2+5
-23x =7
x =\(\dfrac{-7}{23}\)
x= -0.3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\sqrt{4x-20}\)- 3\(\sqrt{\dfrac{x-5}{9}}\)=2
= \(\sqrt{4x-4.5}\)-3\(\sqrt{\dfrac{x-5}{9}}\)=2
= 2.2\(\sqrt{x-5}\)-3.9\(\sqrt{x-5}\)=2
= -23\(\sqrt{x-5}\)=2
= -23.x-5=2
=-23x=2+5
-23x =7
x =\(\dfrac{-7}{23}\)
x= -0.3
Tìm x biết
a) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c ) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x+1}\)
e ) \(\sqrt{4x^2+4x+1}=1\)
* Giải phương trình:
a. \(\sqrt{x^2-6x+9}=2\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
1,thu gon bieu thuc
a A=\(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
b,B=\(\dfrac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}-\sqrt{7-2\sqrt{6}}}}\)
c, C=\(\dfrac{\sqrt{c^2+2c+1}}{\left|c\right|-1}\)
2,giai cac phuong trinh
a,\(x^2-9\sqrt{x}+14=0\)
b, \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6\)
GIUP MINH VOI MINH CAN GAP
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
\(\sqrt{5x+3}=\sqrt{3-\sqrt{2}}\)
\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
\(\sqrt{\dfrac{-3}{2+x}}=2\)
\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
Tìm x biết:
\(\dfrac{2}{3}\)\(\sqrt{4x^2-20}\)+2\(\sqrt{\dfrac{x^2-5}{9}}\)-3\(\sqrt{x^2-5}\)=2
\(\sqrt{4x+20}-5\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=2\)