= lim((n^2 + 2n)/(4(n^2 + 2n + 1)))
= 1/4
= lim((n^2 + 2n)/(4(n^2 + 2n + 1)))
= 1/4
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
Tính :6/ lim\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
7/ lim \(\dfrac{\sqrt{n^3-2n+5}}{3+5n}\)
10/ lim\(\dfrac{1+3+5+...+\left(2n+1\right)}{3n^3+4}\)
*Bài tập tương tự: Tìm các giới hạn sau:
a) lim ∛(n³)-5n+9/3n-2
b) lim n³-n²-5/n⁴-2n²+1
c) lim -n³+2n²-1/n²+n-1
d) lim √(9n²+1)-2n/6n+2
e) lim 2.5n-9n+1/1+9n
d) lim 1²+2²+3²+...n²/5n³-n2+1
d) lim
5/ lim \(\frac{\left(12-n\right)^3\left(n-2\right)}{\sqrt{n^8-1}-2n^4}\)
6/ lim \(\frac{\sqrt[3]{3-8n^3}-n}{2n+5}\)
7/ lim \(\frac{\sqrt{n^6-2n+1}}{\sqrt{4n^6+3n}}\)
8/ lim \(\left(n^4+2n-20\right)\)
1/ lim \(\frac{n^2-2n}{n^2-n+6}\)
2/ lim \(\frac{4n^2-6}{n^4+n^2-17}\)
3/ lim \(\frac{n^3-n^2+n}{n+7}\)
4/ lim \(\frac{\left(3-2n\right)^4}{\left(n+1\right)^2\left(n^2+1\right)}\)
Cho dãy số (Un) xác định bởi: {U1=2; Un+1= 2Un + 3.2^n+1;∀n ϵ N*
Tính lim Un/(2n + 1).2^n-1
Ai đó giải bài tập giúp em với ạ, em cảm ơn rất nhiều
\(lim\left(\sqrt[3]{n-n^3}+\sqrt{n^2+3n}\right)\)
\(lim\left(\sqrt{n-2\sqrt{n}}-\sqrt{n+4}\right)\)
\(lim\left(\sqrt[3]{3n^2+n^3}-n\right)\)
\(lim\left(\sqrt[3]{n^3+6n}-\sqrt{n^2-4n}\right)\)
\(lim\frac{-3^{n+1}+4^{n+1}}{5.3^n+3.2^{2n-1}}\)
\(lim\left(\frac{3^{2n}-5^{n+1}+7^{n+1}}{3^{n+2}+5^n+2^{3n+2}}\right)\)
\(lim\left(\frac{6^{n+1}+3^{2n+5}}{3^{2n+3}-2^{2n-1}}\right)\)
a) lim n-1/ 2n+7
b) lim 4n^2 -n+1/6n^2 +1
c) lim 3n^2-n/1-n^2
d)lim 8n+1/n^2-2n+19
e) lim (căn 9n^2 -4 ) +2n /2n+7
a) \(lim\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}\)
b) \(lim\frac{\left(2n-1\right)\left(n+1\right)\left(3n+4\right)}{\left(5-6n\right)^3}\)
c) \(lim\left(\sqrt{n^2+5n+1}-\sqrt{n^2-2}\right)\)
d) \(lim\frac{5\cdot3^n-6^{n+1}}{4\cdot2^n+6^n}\)
e) \(lim\left(-2n^3-3n^2+5n-2020\right)\)