ta có : \(\left|x-1\right|\le4\Leftrightarrow-4\le x-1\le4\Leftrightarrow-3\le x\le5\)
ta có : \(\left|x-1\right|\le4\Leftrightarrow-4\le x-1\le4\Leftrightarrow-3\le x\le5\)
Rút gọn các biểu thức sau:
A= \(\left(x+1\right).\left(x^2-x+1\right)+2.\left(x+1\right)-x.\left(x^2+2\right).\)
B= \(\left(5x+1\right).\left(x+7\right)-5x.\left(x-1\right).\)
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
Tính
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+9\right)\left(x+10\right)}\)
Tìm \(x\)
a) \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
Rút gọn biểu thức sau:
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^2+3\left(x-1\right)\left(x+1\right)\)
b, \(\left(x^4-5x^2+25\right)\left(x^2+5\right)-\left(2+x^2\right)^2+3\left(1+x^2\right)^2\)
1. \(\frac{1}{2}x^2-\left(\frac{1}{2}x-4\right)\frac{1}{2}x=-14\)
2. \(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)
3. \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
4. \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
5. \(\left(-2+x^3\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
tìm x
\(\left[\left(x+1\right)\left(2-x\right)-\left(x^2-1\right)\right]:\left(x+1\right)=2\)
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
CMR các biểu thức sau không phụ thuộc vào biến:
\(\left(x-3\right)\left(x+2\right)+\left(x-1\right)\left(x+1\right)-\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)-x^2\)