\(\left(\dfrac{1}{3}\right)^{2017}\cdot3^{2016}\cdot21=\dfrac{1}{3^{2017}}\cdot3^{2016}\cdot21=\dfrac{3^{2016}}{3^{2017}}\cdot21=\dfrac{1}{3}\cdot21=7\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left(\dfrac{1}{3}\right)^{2017}\cdot3^{2016}\cdot21=\dfrac{1}{3^{2017}}\cdot3^{2016}\cdot21=\dfrac{3^{2016}}{3^{2017}}\cdot21=\dfrac{1}{3}\cdot21=7\)
Tính M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{2017^2}\right)\)
Tính rồi so A và B :
\(A=\left(0,25\right)^{-1}.\left(1\dfrac{1}{4}\right)^2+25\left[\left(\dfrac{4}{3}\right)^{-2}:\left(1,25\right)^3\right]:\left(\dfrac{-2}{3}\right)^{-3}\)
\(B=\left(0,2\right)^{-3}.\left[\left(\dfrac{-1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}:\left(\dfrac{1}{8}\right)^{-1}-\left(2^{-3}\right)^{-2}:\dfrac{1}{2^6}\)
Tìm x : \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|=10x\)
cmr:
\(\left(2015^{2017}+2017^{2015}\right)⋮2016\)
Thực hiện phép tính các đa thức sau
a) \(\left(3x^2-2x+5\right)\left(2x^2-3x+1\right)\)
b) \(\left(\dfrac{3}{2}x^2-\dfrac{2}{3}x-\dfrac{5}{3}\right)\left(4x^2-\dfrac{3}{2}x-3\right)\)
c) \(\left(\dfrac{3}{4}x^2+2x-\dfrac{1}{3}\right)\left(4x^2-\dfrac{3}{2}x-3\right)\)
d) \(\left(-\dfrac{1}{3}+2x-x^2\right)\left(-2x^2-\dfrac{1}{2}x+2\right)\)
e) \(\left(3xy+\dfrac{1}{2}x\right)\left(3x^{2y}-3xy^2-1\right)\)
Tính nhanh giá trị của các biểu thức sau:
a) \(A=85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)
b) \(B=1^2-2^2+3^2-4^2+5^2-6^2+...+2011^2-2012^2\)
c) \(C=\dfrac{1}{1975}\left(\dfrac{2}{1945}-1\right)-\dfrac{1}{1945}\left(1-\dfrac{2}{1975}\right)-\dfrac{1974}{1975}.\dfrac{1946}{1945}-\dfrac{3}{1975.1945}\)
d) \(D=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)
\(\dfrac{\left(2^3+1\right)\left(3^3+1\right).....\left(13^3+1\right)}{\left(2^3-1\right)\left(3^3-1\right)......\left(13^3-1\right)}\)
Tính:
S= \(\dfrac{\left(1^4+\dfrac{1}{4}\right).\left(3^4+\dfrac{1}{4}\right)......\left(19^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right).\left(4^4+\dfrac{1}{4}\right)......\left(20^4+\dfrac{1}{4}\right)}\)
Tính :
S= \(\dfrac{\left(1^4+\dfrac{1}{4}\right).\left(3^4+\dfrac{1}{4}\right)......\left(19^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right).\left(4^4+\dfrac{1}{4}\right).......\left(10^4+\dfrac{1}{4}\right)}\)