Khối lượng Sao Hỏa bằng khoảng số lần khối lượng Trái Đất là:
\(\frac{{6,417.{\rm{ }}{{10}^{23}}}}{{5,{{9724.10}^{24}}}} = \frac{{6,417.{\rm{ }}{{10}^{23}}}}{{59,{{724.10}^{23}}}} = \frac{{6,417}}{{59,724}} \approx 0,11\) (lần)
Khối lượng Sao Hỏa bằng khoảng số lần khối lượng Trái Đất là:
\(\frac{{6,417.{\rm{ }}{{10}^{23}}}}{{5,{{9724.10}^{24}}}} = \frac{{6,417.{\rm{ }}{{10}^{23}}}}{{59,{{724.10}^{23}}}} = \frac{{6,417}}{{59,724}} \approx 0,11\) (lần)
Biết vận tốc ánh sáng xấp xỉ bằng \(299\,792\,458\;{\rm{m/s}}\) và ánh sáng Mặt Trời cần khoảng 8 phút 19 giây mới đến được Trái Đất. (Nguồn: https://vi.wikipedia.org)
Khoảng cách giữa Mặt Trời và Trái Đất xấp xỉ bằng bao nhiêu ki-lô-mét?
Chu kì bán rã của nguyên tố phóng xạ Urani 238 là 4,468 . 109 năm (nghĩa là sau 4,468 . 109 năm khối lượng của nguyên tố đó chỉ còn lại một nửa).
(Nguồn: https://vi.wikipedia.org)
a) Ba chu kì bán rã của nguyên tố phóng xạ đó là bao nhiêu năm?
b) Sau ba chu kì bán rã, khối lượng của nguyên tố phóng xạ đó còn lại bằng bao nhiêu phần khối lượng ban đầu?
Hai mảnh vườn có dạng hình vuông. Mảnh vườn thứ nhất có độ dài cạnh là 19,5 m. Mảnh vườn thứ hai có độ dài cạnh là 6,5 m. Diện tích mảnh vườn thứ nhất gấp bao nhiều lần diện tích mảnh vườn thứ hai?
Người ta thường dùng các luỹ thừa của 10 với số mũ nguyên dương để biểu thị những số rất lớn. Ta gọi một số hữu tỉ dương được viết theo kí hiệu khoa học (hay theo dạng chuẩn) nếu nó có dạng a.10n với \(1 \le a < 10\) và n là một số nguyên dương. Ví dụ, khối lượng của Trái Đất viết theo kí hiệu khoa học là 5,9724.1024 kg.
Viết các số sau theo kí hiệu khoa học (với đơn vị đã cho):
a) Khoảng cách giữa Mặt Trăng và Trái Đất khoảng 384 400 km;
b) Khối lượng của Mặt Trời khoảng 1989 . 1027 kg;
c) Khối lượng của Sao Mộc khoảng 1 898 . 1024 kg.
(Nguồn: https://www.nasa.gov)
Sử dụng máy tính cầm tay
Nút luỹ thừa: (ở một số máy tính nút luỹ thừa còn có dạng )
Nút phân số:
Nút chuyển xuống để ghi số hoặc dấu:
Nút chuyển sang phải để ghi số hoăc dấu:
Dùng máy tính cầm tay để tính:
a) \({(3,147)^3};\)
b) \({( - 23,457)^5};\)
c) \({\left( {\frac{4}{{ - 5}}} \right)^4}\);
d) \({(0,12)^2} \cdot {\left( {\frac{{ - 13}}{{28}}} \right)^5}\).
Trên bản đồ có tỉ lệ 1: 100 000, một cánh đồng lúa có dạng hình vuông với độ dài cạnh là \(0,7\;{\rm{cm}}\). Tính diện tích thực tế theo đơn vị mét vuông của cánh đồng lúa đó (viết kết quả dưới dạng \(a{.10^n}\) với \(1 \le a < 10\) )
Cho \(x\) là số hữu tỉ. Viết \({x^{12}}\) dưới dạng:
a) Luỹ thừa của \({x^2}\);
b) Luỹ thừa của \({x^3}\).
Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa của a:
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) với \(a = - \frac{1}{6}\).
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) với \(a = - 0,2\).
Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa:
a)\(\frac{6}{5}.{\left( {1,2} \right)^8};\)
b)\({\left( {\frac{{ - 4}}{9}} \right)^7}:\frac{{16}}{{81}}\)