`2sqrta-asqrt{9/a}(a>0)`
`=2sqrta-a*3/sqrta`
`=2sqrta-3sqrta`
`=-sqrta`
`=>Chọn \ C.`
`2sqrta-asqrt{9/a}(a>0)`
`=2sqrta-a*3/sqrta`
`=2sqrta-3sqrta`
`=-sqrta`
`=>Chọn \ C.`
Rút gọn biểu thức P=3√9^6-2x^3 với x<0 được kết quả là :
A,P =11 x^3
B,P=7x^3
C,P=-25x^3
D,P=-11x^3
Cho a,b,c>0. Tìm Min của
\(A=\dfrac{a^2-3bc}{b+c}+\dfrac{b^2-3ca}{c+a}+\dfrac{3c^2+1}{a+b}\)
Em đang cần gấp, mọi người giúp em với. Cảm ơn!
Cho a>=0, b>=0, c>=0, a+b+c=1
Tìm GTLN của M=\(\sqrt{2a^2+3a+4}+\sqrt{2b^2+3b+4}+\sqrt{2c^2+3c+4}\)
Cho a,b,c>0 thỏa mãn 4a2+b2+3c2=4ab
Tìm GTNN của P==5a+3b+c+\(\dfrac{20}{a}\)+\(\dfrac{8}{b}\)+\(\dfrac{8}{3c}\)
Câu 1:
Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x ≥ 0, x ≠ 9.
a) Tính giá trị của B khi x = 16;
b) Rút gọn biểu thức M = A - B;
c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)
Câu 2:
a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.
b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng làm chung một công việc thì sau 12 giờ xong. Nếu tổ 1 làm một mình trong 2 giờ, tổ 2 làm một mình trong 7 giờ thì cả hai tổ làm xong một nửa công việc. Tính thời gian mỗi tổ làm một mình xong toàn bộ công việc.
Câu 3:
1. Cho phương trình \(x-\left(m+3\right)\sqrt{x}+m+2=0\left(1\right)\)
a) Giải phương trình (1) khi m = - 4
b) Tìm m để phương trình (1) có hai nghiệm phân biệt.
2. Cho đường thẳng (d): y = (m - 1) + 4 (m ≠ 1). Đường thẳng (d) cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB bằng 2.
Câu 4:
Cho tam giác đều ABC nội tiếp đường tròn (O; R). Điểm M trên cung nhỏ AC. Hạ BK ⊥ AM tại K. Đường thẳng BK cắt tia CM tại E. Nối BE cắt đường tròn (O: R) tại N (N ≠ B).
a) Chứng minh tam giác MBE cân tại M;
b) Chứng minh EN.EB = EM.EC;
c) Tìm vị trí của M để tam giác MBE có chu vi lớn nhất.
Câu 5:
Giải hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Chúc các em ôn thi tốt!
Cho a,b,c là ba số dương thỏa mãn a + b +c = 3 . Chứng minh rằng : \(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\) ≥ 2
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng :\(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\)≥ 2
cho a,b,c là các só thực dương thỏa mãn a +2b +3c =13
tìm GTNN của P = \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\)