tại I. Ta có I là tâm mặt cầu ngoại tiếp tứ diện OBCD. Mặt cầu này có bán kính là IC và \(IC^2=\dfrac{1}{2}OH\) (vì \(HC'=\dfrac{1}{2}HC\))
Do đó :
\(IC^2=\dfrac{a^2}{24}+\dfrac{a^2}{3}=\dfrac{9a^2}{24}\)
hay \(IC=\dfrac{a\sqrt{6}}{4}\)
tại I. Ta có I là tâm mặt cầu ngoại tiếp tứ diện OBCD. Mặt cầu này có bán kính là IC và \(IC^2=\dfrac{1}{2}OH\) (vì \(HC'=\dfrac{1}{2}HC\))
Do đó :
\(IC^2=\dfrac{a^2}{24}+\dfrac{a^2}{3}=\dfrac{9a^2}{24}\)
hay \(IC=\dfrac{a\sqrt{6}}{4}\)
Hình tứ diện ABCD có các mặt ABC và BCD là tam giác đều cạnh a, góc giữa đường thẳng AD và mp(ABC) bằng 45 độ. Tính bán kính mặt cầu ngoại tiếp tứ diện.
Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE ?
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó ?
cho hình chóp đều SABC, đáy ABC có cạnh bằng a góc giữa cạnh bên và mặt đáy bằng 60 độ
a, xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp SABC
b, Tính thể tính khối nón ngoại tiếp hình chóp SABC
c, Tính diện tích toàn phần hình trụ có diện tích là tâm đáy trên và tám giác abC là tam giác ngoại tiếp đáy dưới
Hình chóp tam giác S.ABC có SA = SB = SB = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó ?
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) có SA = a, AB = b, AC = c. Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau :
a) \(\widehat{BAC}=90^0\)
b) \(\widehat{BAC}=60^0\) và b = c
c) \(\widehat{BAC}=120^0\) và b = c
Cho hình chóp S.ABC có SA vuông góc (ABC) . Cho tam giác ABC vuông B có AB=2a ,BC=a Biết cạnh SB tạo với đáy một góc 60
a) Xác định tâm và bán kính mặt cầu ngoại tiếp S.ABC
b) Tính S mặt cầu và Vkhối cầu
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AA' = a; AB = b; AD = c
a) Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó
b) Tính bán kính của đường tròn là giao tuyến của mặt phẳng (ABCD) với mặt cầu trên
Cho tứ diện ABCD có AB vuông góc với (BCD) và AB=2căn3, biết tam giác BCD có BC=căn 6,BD= 3 căn 2 và CBD=30°, thể tích của khối cầu ngoại tiếp hình tứ diện đã cho bằng