Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Cho hình thang ABCD có 2 đáy AB và CD ( AB<CD ) . AC cắt BD tại O , BC cắt AD tại I . Gọi M và K lần lượt là trung điểm của CD và AB.
a)MO đi qua K
b)MI đi qua K
giúp mk với mai nộp bài rồi !!
Cho hình thang cân ABCD có AB=3cm, CD=6cm góc C + góc D=90 độ, M và N lần lượt là trung điểm của AB và CD. tính MN
Cho hình thang ABCd có AB = 4 cm ; CD = 6 cm và tổng góc C + góc D = 90 độ. Lấy M,N là trung điểm của AB, CD. tính MN
cho hình thang ABCD(AB//CD).đường trung bình MN của hình thang (M\(\in\)AD,N\(\in\)BC) cắt đường chéo AC,BD thứ tự tại E,F
a.c/m ME=FN
b.cho AB=6cm,CD=8cm.tính EF
(Các bn làm hộ mk ý c thôi nha)
Cho hình thang ABCD (AB song song với CD). Gọi AC giao với BD tại O, AD giao với BC tại I, OI cắt AB tại E, cắt CD tại F.
a) CM; \(\dfrac{OA+OB}{OC+OD}=\dfrac{IA+IB}{IC+ID}\)
b) CM; EA=EB
c) Nếu CD=3AB và \(S_{ABCD}=48cm^2\). Tính \(S_{IAOB}\)
Cho tứ giác ABCD. Chứng minh: a) AB< BC + CD + AD b) AC + BD <AB + BC + CD + AD
Giúp mk vs
Cho hình thang ABCD, AB//CD, AC vuông góc với BD a, CM: AB^2+CD^2= AD^2+ BC^2 b, AC^2+BD^2=(AB+CD)^2c, Kẻ đường cao AH , , đường trung bình MN của hình thang ABCD biết BD=9cm, AC=12cm. Tính diện tích tứ giác AMHN
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF