Đại số lớp 6

DH

Help me now !!!!!!!!!!!!!!!!!!!!!!!Bài tập Tất cả

MV
23 tháng 4 2017 lúc 15:47

a) Ta có: \(\overline{ababab}=\overline{ab}\cdot10101\)\(10101⋮3\) nên \(10101.\overline{ab}⋮3\Rightarrow\overline{ababab}⋮3\)

b)

\(S=5+5^2+5^3+5^4+...+5^{2004}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{1999}+5^{2002}\right)+\left(5^{2000}+5^{2003}\right)+\left(5^{2001}+5^{2004}\right)\)\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+5^3.\left(1+5^3\right)+5^7.\left(1+5^3\right)+5^8.\left(1+5^3\right)+5^9.\left(1+5^3\right)+...+5^{1999}.\left(1+5^3\right)+5^{2000}.\left(1+5^3\right)+5^{2001}.\left(1+5^3\right)\)\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{1999}+5^{2000}+5^{2001}\right)\)

\(=126.\left(5+5^2+5^3+...+5^{1999}+5^{2000}+5^{2001}\right)⋮126\)

Vậy \(S⋮126\)

\(S=5+5^2+5^3+5^4+...+5^{2004}\)

\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\left(5^5+5^7\right)+\left(5^6+5^8\right)+...+\left(5^{2002}+5^{2004}\right)\)\(=5.\left(1+5^2\right)+5^2.\left(1+5^2\right)+5^5.\left(1+5^2\right)+...+5^{2002}.\left(1+5^2\right)\)\(=5.26+5^2.26+5^5.26+...+5^{2002}.26\)

\(=26.\left(5+5^2+5^5+...+5^{2002}\right)\)

\(=26.5.\left(1+5+5^4+5^5+...+5^{2001}\right)\)

\(=130.\left(1+5+5^4+...+5^{2001}\right)⋮65\)

Vậy \(S⋮65\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
DH
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
DN
Xem chi tiết
HD
Xem chi tiết