- Theo dề bài ta có:
\(\left(a+b\right):\left(b+c\right):\left(c+a\right)=6:7:8\)
=> \(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)
- Áp dụng tính chất của dãy tỉ só bằng nhau ta có:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)\(=\dfrac{a+b+b+c+c+a}{6+7+8}=\dfrac{\left(a+b+c\right).2}{21}=\dfrac{14.2}{21}=\dfrac{28}{21}=\dfrac{4}{3}\)
- Suy ra:
\(a+b=\dfrac{4}{3}.6=8\)
- Vì \(a+b+c=14\)
nên \(\Rightarrow c=14-8=6\)
- Vậy c = 6
\(\left(a+b\right):\left(b+c\right):\left(c+a\right)=6:7:8\\ \Rightarrow\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}=\dfrac{a+b+b+c+c+a}{6+7+8}=\dfrac{2a+2b+2c}{21}=\dfrac{2\left(a+b+c\right)}{21}=\dfrac{2\cdot14}{21}=\dfrac{28}{21}=\dfrac{4}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{4}{3}\Rightarrow a+b=8\Rightarrow c=6\\\dfrac{b+c}{7}=\dfrac{4}{3}\Rightarrow b+c=9\dfrac{1}{3}\Rightarrow a=4\dfrac{2}{3}\\\dfrac{c+a}{8}=\dfrac{4}{3}\Rightarrow c+a=10\dfrac{2}{3}\Rightarrow b=3\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(a=4\dfrac{2}{3};b=3\dfrac{1}{3};c=6\)
Ta có:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}=\dfrac{a+b+b+c+c+a}{6+7+8}=\dfrac{2.\left(a+b+c\right)}{21}=\dfrac{2.14}{21}=\dfrac{4}{3}\)
\(\Rightarrow a+b=6.\dfrac{4}{3}=8\) (1)
Lại có: \(a+b+c=14\) (2)
Từ (1) và (2)
\(\Rightarrow8+c=14\)
\(\Rightarrow c=14-8=6\)
Vậy c = 6