Hệ có nghiệm duy nhất `<=> 1/m \ne 1/(-1) <=> m \ne -1`
để hệ pt có nghiệm duy nhất<=>\(\dfrac{m}{1}\ne\dfrac{-1}{1}< =>m\ne1\)
Hệ có nghiệm duy nhất `<=> 1/m \ne 1/(-1) <=> m \ne -1`
để hệ pt có nghiệm duy nhất<=>\(\dfrac{m}{1}\ne\dfrac{-1}{1}< =>m\ne1\)
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
cho hệ: \(\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\)
a. giải hệ phương trình khi m=2
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: x2 - y2=\(\dfrac{5}{2}\)
cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=4\\x+2y=5\end{matrix}\right.\)
tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn x > y > 0
Cho hệ phương trình \(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\end{matrix}\right.\) (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x+y=9\\\)
cho hệ phương trình \(\left\{{}\begin{matrix}4x-my-m-6=0\\mx-y-2m=0\end{matrix}\right.\)
tìm m để : a. hệ phương trình vô nghiệm
b. hệ phương trình có nghiệm duy nhất
c. hệ phương trình có vô số nghiệm
Cho hệ phương trình: \(\left\{{}\begin{matrix}2mx+y=1\\2x-\left(2m+1\right)y=-1\end{matrix}\right.\) (m là tham số). Tìm các giá trị của m để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm (x,y) thỏa mãn x2 - 2x - y > 0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+ay=3a\\-\text{ax}+y=2-a^2\end{matrix}\right.\)(*) với a là tham số. Tìm giá trị a để hệ phương trình (*) có nghiệm duy nhất (x,y) thỏa mãn \(\dfrac{2y}{x^2+3}\) là số nguyên
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để HPT có nghiệm duy nhất (x;y) sao cho x,y có giá trị nhỏ nhất.