Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

SK

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số a (a > 0) ?

GT
21 tháng 4 2017 lúc 17:04

Gọi cạnh góc vuông là \(x\) thì cạnh huyền là \(a-x\) (điều kiện: \(0< x< a-x\Leftrightarrow0< x< \dfrac{a}{2}\)) và cạnh góc vuông kia là: \(\sqrt{\left(a-x\right)^2-x^2}\).

Diện tích tam giác vuông là:

\(S=\dfrac{1}{2}x\sqrt{\left(a-x\right)^2-x^2}=\dfrac{1}{2}x\sqrt{a^2-2ax}\)

\(S'=\dfrac{1}{2}\sqrt{a^2-2ax}+\dfrac{1}{2}x\dfrac{-a}{\sqrt{a^2-2ax}}\)

\(=\dfrac{1}{2}\dfrac{a^2-3ax}{\sqrt{a^2-2ax}}\)

\(S'=0\Leftrightarrow x=\dfrac{a}{3}\)

S' đổi dấu từ dương sang âm khi x đi qua điểm \(\dfrac{a}{3}\) nên S đạt cực đại tại \(x=\dfrac{a}{3}\).

Khi đó diện tích tam giác vuông là:

\(S\left(\dfrac{a}{3}\right)=\dfrac{1}{2}\dfrac{a}{3}\sqrt{a^2-2a.\dfrac{a}{3}}=\dfrac{a^2\sqrt{3}}{18}\)

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
AN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết