Đa giác. Diện tích của đa giác

MV

Gọi a,b,c,d theo thứ tự là độ dài các cạnh AB,BC,CD,DA của tứ giác ABCD , S và p theo thứ tự là diện tích và nửa chu vi của tứ giác đó a CMR S<= 1/2(ab+cd) b. CMR 4S<= (a+c)(b+d)<=p^2 c. CMR S<= a^2+b^2+c^2+d^2/4

AH
19 tháng 11 2017 lúc 17:35

Lời giải:

a)

Bổ đề: Tam giác $ABC$ có \(\angle A=\alpha\) thì \(S_{ABC}=\frac{AB.AC\sin \alpha}{2}\)

Chứng minh: Từ $B$ kẻ đường cao $BH$ của tam giác

Khi đó:\(S_{ABC}=\frac{BH.AC}{2}\) (1)

\(\frac{BH}{AB}=\sin \alpha\) (TH góc A tù thì ta có: \(\frac{BH}{AB}=\sin (180^0-\alpha)=\sin \alpha\) ) \(\Rightarrow BH=AB.\sin \alpha\) (2)

Từ (1).(2) suy ra \(S_{ABC}=\frac{AB.AC.\sin \alpha}{2}\)

--------------------------------------------

Quay lại bài toán:

a)

\(S_{ABCD}=S_{ABC}+S_{ADC}=\frac{ab.\sin \angle ABC}{2}+\frac{cd.\sin \angle ADC}{2}\)

\(\sin ABC, \sin ADC\leq 1\Rightarrow S_{ABCD}\leq \frac{ab}{2}+\frac{cd}{2}=\frac{ab+cd}{2}\)

Ta có đpcm.

b)

* Vế đầu tiên:

\(2S=S_{ABC}+S_{ADC}+S_{BAD}+S_{BCD}\)

\(=\frac{ac\sin \angle ABC}{2}+\frac{cd\sin \angle ADC}{2}+\frac{ad.\sin \angle BAD}{2}+\frac{bc\sin \angle BCD}{2}\)

\(\leq \frac{ac}{2}+\frac{cd}{2}+\frac{ad}{2}+\frac{bc}{2}=\frac{ac+cd+ad+bc}{2}\)

\(\Leftrightarrow 4S\leq ac+cd+ad+bc=(a+c)(b+d)\) (đpcm)

* Vế sau:

\(p^2=\left(\frac{a+b+c+d}{2}\right)^2=\frac{[(a+c)+(b+d)]^2}{4}\)

Áp dụng bđt AM-GM: \((a+c)+(b+d)\geq 2\sqrt{(a+c)(b+d)}\)

\(\Rightarrow 4p^2=[(a+c)+(b+d)]^2\geq 4(a+c)(b+d)\)

\(\Rightarrow p^2\geq (a+c)(b+d)\) (đpcm)

c)

Theo phần b, ta đã chứng minh được:

\(S\leq \frac{(a+c)(b+d)}{4}\) (1)

Mặt khác, áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\)

\(a^2+d^2\geq 2ad\)

\(b^2+c^2\geq 2bc\)

\(c^2+d^2\geq 2cd\)

Cộng theo vế: \(\Rightarrow 2(a^2+b^2+c^2+d^2)\geq 2(ab+ad+bc+cd)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\geq ab+ad+bc+cd=(a+c)(b+d)\) (2)

Từ \((1);(2)\Rightarrow S\leq \frac{a^2+b^2+c^2+d^2}{4}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
NK
Xem chi tiết
TD
Xem chi tiết
BL
Xem chi tiết
HA
Xem chi tiết
TT
Xem chi tiết
VL
Xem chi tiết
Y
Xem chi tiết
NO
Xem chi tiết