Chương 2: TỔ HỢP. XÁC SUẤT

TC

Gọi A là tâp hợp các số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc vào tập A. Tính xác suất để chọn được số chia hết cho 9.

H24
2 tháng 12 2022 lúc 22:18

Số các số có `8` chữ số đôi một khác nhau là `9.A_9^7`(số)

`=> n(A) = n(\Omega) = 9.A_9^7`

Dễ thấy rằng `0 + 1 + 2 + .. + 9 = 45 \vdots 9`

Gọi `X = {0;1;..;9}`

Để số đó chia hết cho `8` thì nó phải được chọn từ các tập 

`X \\ {0;9}` , `X \\ {1;8}` , `X \\ {2;7}` , `X \\ {3;6}` , `X \\ {4;5}` 

Ta xét `2` trường hợp như sau:

Trường hợp `1`: Số đó được chọn từ tập `X \\ {0;9}` 

Xếp `8` số vào `8` vị trí có `8!`(cách)

Trường hợp `2`:Số đó được chọn từ `4` tập còn lại

Chọn `1` trong `4` tập có `C_4^1`(cách)

Xếp `8` chữ số vừa chọn `1` cách ngẫu nhiên có `8!`(cách)

Cho số `0` đứng đầu xếp `7` số còn lại có `7!` cách

Số lập được:`4(8!-7!)`(số)

Gọi `B` là biến cố chọn được số chia hết cho `9` từ tập `A`

`=> |B| = 8! + 4(8!-7!)`

Xác xuất biến cố `B`:

`P(B) = \frac{8!+4(8!-7!)}{9.A_9^7} = \frac{1}{9}`

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
HL
Xem chi tiết
SL
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết