Ôn tập toán 6

LC

Giúp tớ nhé!

Cho 2a +1 và 3a+1 là 2 số chính phương.Chứng tỏ A chia hết cho 40

cảm ơn các bạn trước nhéhehe

CP
2 tháng 7 2016 lúc 8:14

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 

ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 

=> a chia hết cho 5 

5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

   
Bình luận (1)
NH
2 tháng 7 2016 lúc 8:16

Trước hết nên biết: và  với a nguyên dương.

Do đó, ta thấy:

. Tổng hai số chính phương chia 5 dư 2 nên cả hai số đều chia 5 dư 1, suy ra chia hết cho 5 nên Ta thấy là số chính phương lẻ, nên chỉ có thể . Như vậy , tức  là số chính phương lẻ, nên  mà (3,8)=1 nên 

Vì (5,8)=1 nên 40|n

Bình luận (1)

Các câu hỏi tương tự
NL
Xem chi tiết
PL
Xem chi tiết
NN
Xem chi tiết
VN
Xem chi tiết
BC
Xem chi tiết
MK
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
VN
Xem chi tiết