Violympic toán 8

H24

Giúp mk với ạ. 

1: Cho số thực x đk: \(0\le x\le1\)

Tim min và max của:

\(A=\dfrac{x^2}{2-x^2}+\dfrac{1-x^2}{1+x^2}\)

2: Cho hình vuông ABCD có M là trung điểm của DC, trên cạnh BC là 2 điểm H và K sao cho BH = HK = KC, AM cắt BD tại N. CMR:

a, \(\Delta ANH\)  vuông cân tại N.

b, AC đi qua trung điểm của NK.

AH
10 tháng 5 2021 lúc 0:47

Câu 1:

$A+2=\frac{2}{2-x^2}+\frac{2}{x^2+1}=2(\frac{1}{2-x^2}+\frac{1}{x^2+1})$

$\geq 2.\frac{4}{2-x^2+x^2+1}=\frac{8}{3}$ (áp dụng BĐT Cauchy-Schwarz)

$\Rightarrow A\geq \frac{2}{3}$

Vậy $A_{\min}=\frac{2}{3}$ khi $x=\frac{1}{\sqrt{2}}$

Mặt khác:

\(A-1=\frac{2(x^2-1)}{2-x^2}+\frac{1-x^2}{1+x^2}=\frac{3x^2(x^2-1)}{(2-x^2)(x^2+1)}\leq 0\) với mọi $0\leq x\leq 1$

$\Rightarrow A\leq 1$

Vậy $A_{\max}=1$ khi $x=0$ hoặc $x=1$

Bình luận (1)
AH
10 tháng 5 2021 lúc 1:10

Lời giải:

Gọi cạnh hình vuông là $a$

a) Áp dụng định lý Pitago cho các tam giác vuông sau:

Tam giác $ADM$: $AM=\sqrt{AD^2+DM^2}=\sqrt{a^2+(\frac{a}{2})^2}=\frac{\sqrt{5}}{2}a$

$AH=\sqrt{AB^2+BH^2}=\sqrt{a^2+(\frac{a}{3})^2}=\frac{\sqrt{10}}{3}a(1)$

$AB\parallel DM$ nên theo định lý Talet:

$\frac{AN}{NM}=\frac{AB}{DM}=2$

$\Rightarrow \frac{AN}{AM}=\frac{2}{3}$

$\Rightarrow AN=\frac{\sqrt{5}}{3}a(2)$

Mặt khác:

$\frac{BN}{DN}=\frac{AB}{DM}=2=\frac{BK}{KC}$ nên $NK\parallel DC$ (theo Talet đảo)

$\Rightarrow NK\perp BC$

$\frac{NK}{DC}=\frac{BK}{BC}=\frac{2}{3}\Rightarrow NK=\frac{2}{3}a$

Áp dụng định lý Pitago: $NH=\sqrt{NK^2+KH^2}=\sqrt{(\frac{2}{3}a)^2+(\frac{a}{3})^2}=\frac{\sqrt{5}}{3}a(3)$

Từ $(1);(2);(3)$ kết hợp Pitago đảo suy ra $ANH$ vuông cân tại $N$.

b) 

Cho $AC$ cắt $NK$ tại $Q$

Theo định lý Talet:

$\frac{NQ}{MC}=\frac{AQ}{AC}=\frac{BK}{BC}=\frac{2}{3}$

$\Rightarrow \frac{NQ}{a}=\frac{1}{3}(4)$

$\frac{QK}{a}=\frac{QK}{AB}=\frac{KC}{BC}=\frac{1}{3}(5)$

Từ $(4);(5)\Rightarrow \frac{NQ}{a}=\frac{QK}{a}$

$\Rightarrow NQ=QK$ nên $Q$ là trung điểm $NK$

Do đó ta có đpcm.

 

Bình luận (1)
AH
10 tháng 5 2021 lúc 1:13

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
H24
Xem chi tiết
EC
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TV
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết