Vì B =\(\dfrac{2005^{2015}+1}{2005^{2016}+1}\) < 1
\(\Rightarrow\) B = \(\dfrac{2005^{2015}+1}{2005^{2016}+1}\) <\(\dfrac{2005^{2015}+1+2004}{2005^{2016}+1+2004}\)
\(\Rightarrow\)B = \(\dfrac{2005^{2015}+1}{2005^{2016}+1}\) < \(\dfrac{2005^{2015}+2005}{2005^{2016}+2005}\)
\(\Rightarrow\) B = \(\dfrac{2005^{2015}+1}{2005^{2016}+1}\) < \(\dfrac{2005^{2015}+2005}{2005^{2016}+2005}\)
\(\Rightarrow\) B = \(\dfrac{2005^{2015}+1}{2005^{2016}+1}\) < \(\dfrac{2005\left(2005^{2014}+1\right)}{2005\left(2005^{2015}+1\right)}\)
\(\Rightarrow\) B = \(\dfrac{2005^{2015}+1}{2005^{2016}+1}\) < \(\dfrac{2005^{2014}+1}{2005^{2015}+1}\) = A
Vậy A > B
\(2005A=\dfrac{2005.\left(2005^{2014}+1\right)}{2005^{2015}+1}=\dfrac{2005^{2015}+2005}{2005^{2015}+1}\)
\(2005A=\dfrac{2005^{2015}+1+2004}{2005^{2015}+1}=1+\dfrac{2004}{2005^{2015}+1}\)
\(2005B=\dfrac{2005.\left(2005^{2015}+1\right)}{2005^{2016}+1}=\dfrac{2005^{2016}+2005}{2005^{2016}+1}\)
\(2005B=\dfrac{2005^{2016}+1+2004}{2005^{2016}+1}=1+\dfrac{2004}{2005^{2016}+1}\)
Vì \(\dfrac{2004}{2005^{2015}+1}>\dfrac{2004}{2005^{2016}+1}\Rightarrow1+\dfrac{2004}{2005^{2016}+1}>\dfrac{2004}{2005^{2016}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)