A=\(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
A=\(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
=>2A=2.(\(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\))
=>2A=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)
=>2A-A=(\(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\))-(\(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\))
=>A=1-\(\dfrac{1}{2^{10}}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)=1-\(\dfrac{1}{2^{10}}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\\ \Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\\ A=1-\dfrac{1}{2^{10}}\)
Đặt \(S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+....+\dfrac{1}{1024}\)
\(\Rightarrow S=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{1024}}\)
\(\Rightarrow\dfrac{1}{2}S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+....+\dfrac{1}{2^{1025}}\)
\(\Rightarrow\dfrac{1}{2}S-S=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+....+\dfrac{1}{2^{1024}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{1024}}\right)\)
\(\Rightarrow\dfrac{1}{2}S=\dfrac{1}{2^{2014}}-\dfrac{1}{2}\)
\(\Rightarrow S=\left(\dfrac{1}{2^{2014}}-\dfrac{1}{2}\right).2=\dfrac{1}{2^{2013}}\)