Ôn thi vào 10

HT

giúp mình bài  9 với ạ

TK
10 tháng 5 2021 lúc 17:53

a) \(x^2-2\left(m-4\right)x-2m+3=0\)

\(\Delta'=[-\left(m-4\right)]^2-\left(-2m+3\right)\)

\(\Delta'=m^2-8m+16+2m-3\)

\(\Delta'=m^2-6m+13\)

\(\Delta'=\left(m-3\right)^2+4>0\)( với mọi m)

Vậy phương trình(1) luôn có 2 nghiệm phân biệt với mọi m

b)Để phương trình có 2 nghiệm phân biệt cùng âm 

Thì \(-2m+3>0\)

\(-2m>-3\)

\(m< \dfrac{3}{2}\)

c,Vì phương trình (1) có nghiệm 

Nên theo định lí Vi-et ta có

\(x_1+x_2=2\left(m-4\right)\)

\(x_1\cdot x_2=-2m+3\)

Ta có \(x_1+x_2=2\left(m-4\right)\)

\(x_1+x_2+8=2m\)

\(m=\dfrac{x_1+x_2+8}{2}\)(2)

Ta có \(x_1\cdot x_2=-2m+3\)

\(x_1\cdot x_2-3=-2m\)

\(m=-\dfrac{x_1\cdot x_2-3}{2}\)(3)

Từ (2) và(3)

\(\dfrac{x_1+x_2+8}{2}\)=\(-\dfrac{x_1\cdot x_2-3}{2}\)

mình làm trước 3 câu trên .Còn câu cuối do có việc bận nên mình bỏ qua nha

 

Bình luận (0)

Các câu hỏi tương tự
SC
Xem chi tiết
MA
Xem chi tiết
HT
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HT
Xem chi tiết
CD
Xem chi tiết
HT
Xem chi tiết
QD
Xem chi tiết