Ôn thi vào 10

TD

Giúp mik Câu 3.2 với ạ

LH
29 tháng 5 2021 lúc 21:37

Có \(ac=1.\left(-2\right)=-2\)<0

=>Pt luôn có hai nghiệm pb trái dấu

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)

Do x1;x2 là hai nghiệm của pt \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3=\left(m-1\right)x_1-1\\x_2^2-3=\left(m-1\right)x_2-1\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)(đk: \(x^2\ne3\) thay vào pt ban đầu => \(m\ne\dfrac{3+\sqrt{3}}{3}\))

\(\Rightarrow x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

\(\Leftrightarrow x_1\left[\left(m-1\right)x_1-1\right]=x_2\left[\left(m-1\right)x_2-1\right]\)

\(\Leftrightarrow x_1^2\left(m-1\right)-x_1=x_2^2\left(m-1\right)-x_2\)

\(\Leftrightarrow\left(m-1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(x_1+x_2\right)-1=0\) (vì \(x_1\ne x_2\))

\(\Leftrightarrow\left(m-1\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\) (thỏa mãn)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
CA
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
HG
Xem chi tiết
TD
Xem chi tiết