a, \(\sqrt{x^2+3x+2}=\sqrt{x-1}\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+3x+2=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2x+3=0\left(VN\right)\end{matrix}\right.\) Vậy không có x tm đề bài
f, \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
ĐK: x≥3/2
\(pt\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\dfrac{3}{2}\)(tm)
Vậy...
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
ĐK: \(\left\{{}\begin{matrix}x^2-9\ge0\\x^2-6x+9\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\Leftrightarrow x=3\left(tm\right)\)
h, \(pt\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)
TH1: x≥2, pt <=> \(x-1+x-2=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(tm\right)\)
TH2: 1<x<2, pt<=>\(x-1+2-x=3\Leftrightarrow1=3\left(vl\right)\)
TH3: x≤1, pt<=>\(1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(tm\right)\)
Vậy S={0;2}