Ôn thi vào 10

H24

Giải PT : 

\(\dfrac{13\left(1-2x^2\right)}{\sqrt{1-x^2}}+\dfrac{9\left(1+2x^2\right)}{\sqrt{1+x^2}}=0\)

NM
5 tháng 10 2021 lúc 11:20

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
DL
Xem chi tiết
HB
Xem chi tiết
UI
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết