Violympic toán 8

TL

Giải phương trình

\(|x+1|+3|x-1|=x+2+|x|+2|x-2|\)

Các bạn giúp mình nhé!

H24
6 tháng 2 2020 lúc 10:10

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

Bình luận (0)
 Khách vãng lai đã xóa
TK
6 tháng 2 2020 lúc 10:12
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

Bình luận (0)
 Khách vãng lai đã xóa
DH
6 tháng 2 2020 lúc 12:18

Các thị thức trong dấu giá trị tuyệt đối có nghiệm là: \(\pm1;0;2\)

\(\Rightarrow\) Ta xét pt trong các khoảng sau:

\(\left\{{}\begin{matrix}x< -1\\-1\le x< 0\\0\le x< 1\\1\le x< 2\end{matrix}\right.\)

Với: \(x< -1\) thì:

\(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\\left|x-1\right|=-\left(x-1\right)\\\left|x\right|=-x\\\left|x-2\right|=-\left(x-2\right)\end{matrix}\right.\)

Và ta có pt sau: \(-\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-20\right)\)

\(\Leftrightarrow x=-2\)

Với \(-1\le x< 0\) ta có pt:

\(\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-20\right)\)

\(\Leftrightarrow0x=8\left(vn\right)\)

Vậy \(\left\{{}\begin{matrix}x=-2\\x\ge2\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
6 tháng 2 2020 lúc 13:45

Bài này lập bảng xét dấu đi, chắc ăn hơn, mặc dù hơi dài.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
H24
Xem chi tiết