Violympic toán 8

NG

Giải phương trình: \((x-5)(x-4)(x-8)(x-10)=72x^2\)

AH
30 tháng 6 2019 lúc 0:05

Lời giải:

PT \(\Leftrightarrow [(x-5)(x-8)][(x-4)(x-10)]=72x^2\)

\(\Leftrightarrow (x^2-13x+40)(x^2-14x+40)=72x^2\)

Đặt \(x^2-13x+40=a\) thì pt trở thành:

\(a(a-x)=72x^2\)

\(\Leftrightarrow a^2-ax-72x^2=0\)

\(\Leftrightarrow a^2-9ax+8ax-72x^2=0\)

\(\Leftrightarrow a(a-9x)+8x(a-9x)=0\)

\(\Leftrightarrow (a-9x)(a+8x)=0\)

Nếu $a-9x=0$

\(\Leftrightarrow x^2-13x+40-9x=0\)

\(\Leftrightarrow x^2-22x+40=0\)

\(\Leftrightarrow (x-2)(x-20)=0\Rightarrow \left[\begin{matrix} x=2\\ x=20\end{matrix}\right.\)

Nếu $a+8x=0$

\(\Leftrightarrow x^2-13x+40+8x=0\)

\(\Leftrightarrow x^2-5x+40=0\Leftrightarrow (x-\frac{5}{2})^2=-\frac{135}{4}\) (vô lý)

Vậy........

Bình luận (0)

Các câu hỏi tương tự
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
H24
Xem chi tiết