Violympic toán 8

NG

Giải phương trình: \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)\(=2\).

H24
26 tháng 6 2019 lúc 7:53

Em thử ạ!

ĐKXĐ: \(x\ge1\)

Đặt \(\sqrt{x-1}=t\ge0\Rightarrow x=t^2+1\)

\(PT\Leftrightarrow\sqrt{t^2-2t+1}+\sqrt{t^2+2t+1}=2\)

\(\Leftrightarrow\sqrt{\left(t-1\right)^2}+\sqrt{\left(t+1\right)^2}=2\)

\(\Leftrightarrow\left|t-1\right|+\left|t+1\right|=2\)

Với t <-1 => ko thỏa mãn điều kiện nên ta không cần xét

Với \(-1\le t< 1\) thì pt trở thành 2 = 2 (đúng)

Kết hợp đk t >= 0 suy ra \(0\le t< 1\Leftrightarrow0\le\sqrt{x-1}< 1\Leftrightarrow1\le x< 2\) (1)

Với \(t\ge1\). Phương trình trở thành \(2t=2\Leftrightarrow t=1\)

Suy ra x = 2 (2)

Kết hợp (1) và (2) suy ra \(1\le x\le2\)

Bình luận (0)
LG
25 tháng 6 2019 lúc 22:22

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}=2}\) \(\left(x\ge1\right)\)

\(\Leftrightarrow x-2\sqrt{x-1}+x+2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-4\left(x-1\right)}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-4x+4}=4\)

\(\Leftrightarrow2|x-2|=4-2x\)(1)

Với \(x\ge2\) thì (1) \(\Leftrightarrow2x-4=4-2x\Leftrightarrow4x=8\Leftrightarrow x=2\)

Với \(1\le x< 2\) thì (1) \(\Leftrightarrow2\left(2-x\right)=4-2x\Leftrightarrow4-2x=4-2x\) (luôn đg)

Vậy x = 2

Bình luận (0)

Các câu hỏi tương tự
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
QL
Xem chi tiết
HL
Xem chi tiết
HT
Xem chi tiết